1. Schriml, L.M., Arze, C., Nadendla, S., Chang, Y.W., Mazaitis, M., Felix, V., Feng, G. and Kibbe, W.A. (2012) Disease Ontology: a backbone for disease semantic integration. Nucleic acids research, 40, D940-946.
2. Davis, A.P. et al. The Comparative Toxicogenomics Database: update 2013. Nucleic Acids Res 41, D1104-14 (2013).
3. Mitchell, J.A. et al. Gene indexing: characterization and analysis of NLM's GeneRIFs. AMIA Annu Symp Proc, 460-4 (2003).
4. Becker, K.G., Barnes, K.C., Bright, T.J. & Wang, S.A. The genetic association database. Nat Genet 36, 431-2 (2004).
5. Amberger, J., Bocchini, C. & Hamosh, A. A new face and new challenges for Online Mendelian Inheritance in Man. Human mutation 32, 564-567 (2011).
6. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25-9 (2000).
7. Barrell, D. et al. The GOA database in 2009--an integrated Gene Ontology Annotation resource. Nucleic Acids Res 37, D396-403 (2009).
8. Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res 21: 1109-1121.
9. Resnik P (1995) Using information content to evaluate semantic similarity in a taxonomy. arXiv preprint cmp-lg/9511007.
10. Lin D. An information-theoretic definition of similarity; 1998. Proceedings of the 15th international conference on Machine Learning. San Francisco, CA: Morgan Kaufmann. pp. 296-304.
11. Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF (2007) A new method to measure the semantic similarity of GO terms. Bioinformatics 23: 1274-1281.
12. Mathur S, Dinakarpandian D (2012) Finding disease similarity based on implicit semantic similarity. J Biomed Inform 45: 363-371.
13. Cheng L, Li J, Wang YD (2014) SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association. PLOS ONE 9: e99415.
|